Femoral elastic nailing in the older child: proceed with caution

V.S. Pai, P. David Gwynne-Jones, Jean Claude Theis

Dunedin Hospital, Orthopaedics, 207 Musselburgh Rise, Dunedin, Otago, New Zealand
Dunedin Hospital, 201 Great King Street, Dunedin, New Zealand

Accepted 10 October 2004

Introduction

Flexible intra-medullary nailing of paediatric femoral shaft fractures has been a routine procedure in Europe for about 20 years with several large series reported. In theory, the use of elastic nails allows stable fixation of the fracture with minimal soft tissue dissection and avoids the risk of avascular necrosis of the femoral head and damage to the growth plates. It has been shown to give superior results to external fixation of femoral shaft fractures in children. The procedure has justifiably become a popular technique for managing paediatric fractures. With increasing experience the indications for elastic nail fixation have expanded with series reporting its use in patients from the age of 3 to 18 years. There are, however, increasing numbers of reports of both major and minor complications of the procedure as it becomes more widely used.

Materials and methods

Over a period of 2 years (2001–2003), a consecutive series of six children between 9 and 14 years admitted with femoral shaft fractures to Dunedin Hospital were treated by intra-medullary fixation using flexible nails [titanium elastic nail, TEN, Synthes]. In all six cases, two retrograde TENs (4 mm or 3.5 mm) were inserted using a medial and lateral approach. Postoperative immobilisation, and time of protected weight bearing varied according to surgeon preference.

The patients were followed with clinical and radiological evaluation at 2 and 6 weeks, 3 and 6
months or until bony union. One patient had moved overseas and was not able to be traced. Inpatient medical records, outpatient clinic notes, and radiographs were reviewed for all patients. Details of age, weight, mechanism of injury, fracture type, TEN size implanted, hospital stay, time to union, knee range of motion, pain at the nail insertion site and complications were recorded (Table 1). The radiographs were evaluated for alignment, callus formation, nail:canal ratio and extra-osseous nail length. A weight:nail ratio was calculated as described by Luhmann et al.9

Results and complications

The mean age at injury was 12 years (range: 9–14 years). There were four boys and two girls. All fractures were sustained in a high-energy impact. There was one open fracture [type I]. The most common pattern was midshaft (four cases) and two were proximal.

The average operative time was 70 min [60–120 min]. The average hospital stay was 8.5 days (range: 4–11 days). The most frequent postoperative malalignment was varus, which was less than 5 degrees in five patients and between 5 and 10 degrees in one. Complete union was noted within 12 weeks in two patients. There was one delayed union which took 20 weeks for complete healing. Four of the five patients with full follow up had significant pain at the knee from the nail tips. This was associated with significant stiffness in two and more mild stiffness in the other two.

Three patients had major complications requiring re-operation.

<table>
<thead>
<tr>
<th>Case</th>
<th>2 WD</th>
<th>3 R</th>
<th>4 CH</th>
<th>5 JE</th>
<th>6 AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age and Sex</td>
<td>12; M</td>
<td>9; F</td>
<td>14; M</td>
<td>9; F</td>
<td>13; M</td>
</tr>
<tr>
<td>Injury Mechanism</td>
<td>Waterslide</td>
<td>MVA</td>
<td>Pushbike</td>
<td>MVA</td>
<td>MVA</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>55</td>
<td>24</td>
<td>67</td>
<td>26</td>
<td>62</td>
</tr>
<tr>
<td>Weight nail ratio</td>
<td>7.2</td>
<td>3.1</td>
<td>8.3</td>
<td>3.7</td>
<td>8.9</td>
</tr>
<tr>
<td>Type of #</td>
<td>Proximal 1/3 transverse</td>
<td>Midshaft transverse</td>
<td>Proximal 1/3 transverse</td>
<td>Midshaft transverse</td>
<td>Midshaft transverse</td>
</tr>
<tr>
<td>Radiological nail diameter, canal diameter (isthmus)</td>
<td>4 mm, 3.5 mm</td>
<td>3.5 mm</td>
<td>4 mm</td>
<td>3.5 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>Nail: canal ratio</td>
<td>10 mm</td>
<td>10 mm</td>
<td>11 mm</td>
<td>9 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>Extraosseous part of the nail (mm) [medial/lateral]</td>
<td>37.5%</td>
<td>35%</td>
<td>36%</td>
<td>39%</td>
<td>25%</td>
</tr>
<tr>
<td>Radiological Nail diameter Canal diameter (isthmus)</td>
<td>25, 15</td>
<td>15, 25</td>
<td>20, 30</td>
<td>30, 20</td>
<td>20, 20</td>
</tr>
<tr>
<td>Post-op rehabilitation</td>
<td>TWB** with ROM brace</td>
<td>TWB</td>
<td>TWB</td>
<td>TWB with ROM brace</td>
<td>TWB with ROM brace</td>
</tr>
<tr>
<td>Hospital stay [days]</td>
<td>9 days</td>
<td>11 days</td>
<td>6 days</td>
<td>7 days</td>
<td>4 days</td>
</tr>
<tr>
<td>Healing time</td>
<td>?</td>
<td>8 weeks</td>
<td>20 weeks</td>
<td>12 weeks</td>
<td>NA</td>
</tr>
<tr>
<td>Varus-Valgus</td>
<td>4° Varus</td>
<td>6° Varus</td>
<td>4° Varus</td>
<td>5° Varus</td>
<td>2° Varus</td>
</tr>
<tr>
<td>Complications: knee</td>
<td>None</td>
<td>None</td>
<td>Knee pain</td>
<td>Knee pain</td>
<td>Knee pain</td>
</tr>
<tr>
<td>Treatment for complication</td>
<td>None</td>
<td>None</td>
<td>Observation</td>
<td>Joint lavage and removal of the nail</td>
<td>Removal of TEN and intra-medullary fixation</td>
</tr>
<tr>
<td>Time to TEN removal</td>
<td>N/K</td>
<td>4 months</td>
<td>6 months</td>
<td>4 months</td>
<td>5 weeks</td>
</tr>
</tbody>
</table>

ROM: range of movement knee brace.

* Weight nail ratio [Luhmann]: weight in kg/total diameter of the implanted nail.

** TWB: touch weight bearing.
Case 4: CH, a 9-year-old girl was knocked down by a car and sustained a transverse fracture at the midshaft of right femur. At 3 months, although the fracture healed well with 5 degrees of varus, she had discomfort at the nail site. She was booked electively for removal of nail. A week before her scheduled surgery, she was admitted acutely with a tense swelling in the right knee which was very painful. At admission her blood report and aspirate did not indicate infection. Radiologically, there was backing-out of the medial nail which has been placed more anteriorly than medial. She underwent immediate removal of the nail and arthroscopic wash out of the knee, with no further sequence.

Case 5: JE, a 13-year-old boy involved in a motorbike accident presented with a type I open fracture of his femur. The fracture was midshaft with medial comminution. After initial wound debridement, the fracture was stabilised with two 3.5 mm TENs. Reduction and fixation appeared stable. He was mobilised touch weight bearing crutches in a knee brace. At 4 weeks, he fell on his R leg, while he was trying to get out of a chair and presented with shortening and deformity of the leg. Radiological examination showed a bent lateral pin at the fracture site with 20 degrees varus deformity [Fig. 1a and b]. The TEN pins were removed and a locked intra-medullary nail inserted through the tip of the greater trochanter. He only had 40 degrees of flexion so his knee was manipulated under anaesthetic to 120 degrees. At 3 months post-op, he was fully weight bearing with normal movement at the knee. At 6 months, there was complete healing with no avascular necrosis of the femoral head.

Case 6: AH, a 14-year-old boy had significant stiffness and pain around the knee joint 5 months after titanium nail fixation with only 30 degrees of knee flexion. He was fully weight bearing and the fracture appeared to be united radiologically. The nails were removed but two weeks later he refractured following a simple fall on a level ground [Fig. 2a and b]. This was treated with a locked intra-medullary rod through a trochanteric entry point. The knee was manipulated to 120 degrees of flexion. The fracture healed uneventfully and full knee movement has been regained.

Figure 1 Case 5: (a) Shows initial placement of flexible intra-medullary nails. (b) Radiographs taken 4 weeks after surgery, showing varus displacement and a bend in the lateral nail.

Figure 2 Case 6: (a) Anteroposterior radiograph 4 months after internal fixation with titanium elastic nails. (b) Radiograph showing refracture taken two weeks after early removal of nails for pain and knee stiffness at 5 months.
Discussion

In a multicentre study of early results from the USA, Flynn et al.\(^5\) reported some of the technical pitfalls in the insertion of flexible nails. He emphasises choosing the correct diameter nail, which should be 40% of the diameter of the isthmus, accurate precontouring of the nail and the importance of only leaving 1–2 cm protruding beyond the cortex.

With the conventional retrograde insertion technique of a medial and lateral wire there is an incidence of nail tip pain, bursitis and skin ulceration which ranges from 1 to 40% (Table 2). This has led to repeat nailing,\(^10\) cutting nails shorter,\(^10\) deep infections,\(^5,10\) knee synovitis or hemorrhagis,\(^14\) knee stiffness and pain,\(^11\) early removal of nails\(^1,5,11\) and subsequent refractures.\(^5,7\) Heinrick et al.\(^7\) however reported nail tip problems in only 3 of 78 fractures and strongly recommended the technique. Luhmann et al.\(^9\) found an increased incidence of discomfort and complications when the nails protruded more than 40 mm beyond the cortex. In Case 4, the medial nail was placed too anteriorly and backed out, leaving 3 cm protruding, which resulted in erosion of the joint capsule causing the hemorrhagis. Most authors recommend leaving as short a nail as possible commensurate with allowing its ultimate removal. Special instrumentation to allow cutting the nail short and its subsequent removal would be helpful in reducing this problem. Bourdelat\(^2\) has recommended descending nailing in all but comminuted proximal fractures to avoid irritation problems around the knee.

We found knee stiffness to be a major problem in the postoperative and rehabilitation phase. Ligier et al.\(^10\) suggested that early motion should be discouraged to reduce knee irritation but other authors have not found this to be necessary. In Case 6, a very stiff knee with a range of only 0–30° flexion, necessitated removal of the device early leading to the refracture after a minor.

Fall. Although knee flexion may be regained eventually we believe the incidence of early knee stiffness causes significant problems with rehabilitation.

It has been suggested that TEN fixation should be used with caution in the older, heavier patient especially if there is comminution at the fracture site.\(^3,8,15\) Use of larger diameter nails may help reduce the risk of malunion or loss of position. Luhmann et al.\(^9\) suggested a nail weight ratio of <4 kg per mm diameter of titanium nail implanted in the 6–9 years age group. However, this is not possible in the heavier adolescent patient even with

Table 2 Reported complications of Flexible femoral nails

<table>
<thead>
<tr>
<th>Authors</th>
<th>Fractures</th>
<th>Total complications</th>
<th>Nail tip problems</th>
<th>Unplanned reoperation</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 [5–15 years]</td>
<td>3 (30%)</td>
<td>3 (30%)</td>
<td>2</td>
<td>Migration 1 Bursitis 1 Non-union 3 Nails recut 2 Scar concerns</td>
</tr>
<tr>
<td>2</td>
<td>70 [5–15 years]</td>
<td>3 (25%)</td>
<td>3 (25%)</td>
<td>3</td>
<td>1 Refracture 1 Malunion 3 Nail tip problems 2 Infections</td>
</tr>
<tr>
<td>5</td>
<td>58 [4–16 years]</td>
<td>7 (12%)</td>
<td>5 (9%)</td>
<td>5</td>
<td>1 Refracture 1 Excess valgus 1 Nail migration 1 Bursitis 1 Deep infection 10 Nail was trimmed 3 Nails reintroduced 1 Intraoperative fracture 1 Septic arthatis 1 Non-union 1 Delayed union 10 Early removal of rods for pain and knee stiffness</td>
</tr>
<tr>
<td>7</td>
<td>78 [6–18 Years]</td>
<td>8 (5)</td>
<td>7 (9%)</td>
<td>4</td>
<td>1 Refracture 1 Excess valgus 1 Nail migration 1 Bursitis 10 Deep infection 10 Nail was trimmed 3 Nails reintroduced 1 Intraoperative fracture 1 Septic arthatis 1 Non-union 1 Delayed union 10 Early removal of rods for pain and knee stiffness</td>
</tr>
<tr>
<td>10</td>
<td>123 [5–16 years]</td>
<td>14</td>
<td>13(11%)</td>
<td>13</td>
<td>1 Migration 1 Bursitis 1 Non-union 3 Nails recut 2 Scar concerns</td>
</tr>
<tr>
<td>9</td>
<td>43 [3–9 years]</td>
<td>21 (49%)</td>
<td>17 (40%)</td>
<td>2</td>
<td>1 Refracture 1 Excess valgus 1 Nail migration 1 Bursitis 10 Deep infection 10 Nail was trimmed 3 Nails reintroduced 1 Intraoperative fracture 1 Septic arthatis 1 Non-union 1 Delayed union 10 Early removal of rods for pain and knee stiffness</td>
</tr>
<tr>
<td>11</td>
<td>34 [6–17 years]</td>
<td>10 (33%)</td>
<td>10 (33%)</td>
<td>10</td>
<td>1 Migration 1 Bursitis 1 Non-union 3 Nails recut 2 Scar concerns</td>
</tr>
<tr>
<td>14</td>
<td>2 [8–11 years]</td>
<td></td>
<td></td>
<td></td>
<td>2 Acute synovitis of knee</td>
</tr>
<tr>
<td>15</td>
<td>11 [8–13 years]</td>
<td>1 (9%)</td>
<td></td>
<td></td>
<td>1 Loss of position</td>
</tr>
<tr>
<td>16</td>
<td>141 [5–17 years]</td>
<td></td>
<td></td>
<td></td>
<td>1% Pin site irritation</td>
</tr>
</tbody>
</table>
the largest nail [4 mm]. A functional hip brace supplementing nail fixation has been recom-
mended13 in such a situation.

Non-union or delayed union is uncommon in chil-
dren’s femoral fractures. The delayed union in
patient 3 in our series was probably due to varus
angulation but this has had no long term sequelae.
The refracture in patient 6 after a minor fall also
suggests delayed union.

Many of the technical complications reported
have been ascribed to technical error or the learning
curve. With the small numbers that most centres see
this is likely to remain a problem. While some of
the errors can be minimised by careful attention to
detail there remain problems inherent in the tech-
nique.

We believe that elastic nails are an important and
useful addition to pediatric fracture management.
They should be used with caution in the older and
heavier patient in whom the recently released tro-
chanteric intra-medullary nails may be a better
option.4,12,5,6,8 With the risk of both major and
minor complications we believe the technique
should be used cautiously.

References

1. Bar-on E, Sagiv S, Porat S. External fixation or flexible
intramedullary nailing for femoral shaft fractures in children.
2. Bourdelat D. Fracture of the femoral shaft in children:
advantages of the descending medullary nailing. J Pediatr
3. Buford D, Christensen K, Weatherall P. Intramedullary nailing
85–9.
4. Bues E, Kaelin A. One hundred paediatric femoral fractures:
epidemiology, treatment attitudes, and early complications.
5. Flynn JM, Hresko T, Reynolds RAK. Titanium elastic nails for
paediatric femur fractures: a multicenter study of early
results with analysis of complications. J Pediatr Orthop
6. Gordon JE, Swenning TA, Burd TA. Proximal femoral radio-
graphic changes after lateral transtrochanteric intram-
1295–301.
7. Heinrick SD, Dvaric DM, Darr K. The operative stabilisation
of diabetic diaphyseal femur fractures with flexible intrame-
8. Herndon WA, Mahnken RF, Yngve. Management of femoral
29–32.
9. Luhmann SJ, Schootman M, Schoenecker PL. Complications of
titanium elastic nails for pediatric femoral shaft fractures. J
10. Ligier JN, Metaizeau JP, Prevot J. Elastic stable intramedul-
lary nailing of femoral shaft fractures in children. J Bone
11. Mazda K, Khairouni A, Pennecot GF. Closed flexible intrame-
dullary nailing of the femoral shaft fractures in children.
of femoral fractures in adolescents. J Pediatr Orthop 2004;20:
482–4.
13. Ozdemir HM, Yensel U, Senaran H. Immediate percutaneous
intramedullary fixation and functional bracing for the treat-
ment of pediatric femoral shaft fracture. J Pediatr Orthop
14. Rhode RS, Mendelson SA, Grudziak JS. Acute synovitis of the
knee resulting from intra-articular knee penetration as a
complication of flexible intramedullary nailing of pediatric
15. Stanis AA, Morrissey RT, Renwick SE. Femoral shaft fracture
treatment in patients age 6 to 16 years. J Pediatr Orthop
16. Vrsansky P, Bourdelat D, Faour AA. Flexible stable intrame-
dullary pinning technique in the treatment of Pediatric