## 22. Carpal tunnel

| Medial  | Pisiform and hook of hamate                       |
|---------|---------------------------------------------------|
| Lateral | Scaphoid and trapezium                            |
| Floor   | Carpal bones                                      |
| Roof    | Thickened Flexor retinaculum with Palmaris longus |

## Structures superficial to Flexor retinaculum

- 1. Palmar branch of Radial Artery
- 2. Palmar branches of median nerve
- 3. Palmar branches of ulnar nerve

#### Contents



## 23. Guyon's canal

| Medial  | Pisiform              |
|---------|-----------------------|
| Lateral | Hook of the hamate    |
| Floor   | Flexor retinaculum    |
| Roof    | Volar carpal ligament |

Ulnar nerve and ulnar artery run in the canal [Nerve is medial to artery]



- 1. Palmar carpal ligament
- 2. Transverse carpal
- ligament
- 3. Deep motor ulnar branch
- 4. Superficial sensory ulnar branch

# 24. Snuff Box

## Boundaries

| Base   | Radial styloid               |
|--------|------------------------------|
| Radial | APL and EPB                  |
| Ulnar  | EPL                          |
| Roof   | Deep fascia with superficial |
|        | Radial N                     |
| Floor  | Scaphoid and trapzium        |



# 25. Branches of radial artery at the wrist

Superficial palmar artery, Volar carpal artery, Dorsal carpal artery, First dorsal metacarpal artery, Arteria pollicis (divides into 2 to the thumb), Arteria indices (radial side of the index)



26. DIP and PIP joints

Comment [VP1]:

Lateral collateral ligament



## 27. Wrist Ligaments

IntrinsicScapho-lunate ligament [dorsally strong]Luno-triquetrum ligament [Volarly strong]Other: Scaphocapitate and Scaphotrapezoid

#### Extrinsic: A. Palmar

Radioscaphocapitate ligament [RSC], Long Radio-lunate [LRL],Short Radio-lunate ligaments [SRL] Ulnolunate ligaments, palmar radio-ulnar ligament, Ulnotriquetral ligament, Ulno-capitate ligament Poirier Space: Between RSC and LRL

## B. Dorsal

Dorsal radio carpal ligament Dorsal intercarpal [dorsal capsulotomy in between these two ligament] Radioscapolunate ligament: between LRL and SRL; is not a ligament as previously thought;

NV pedicles.

### Palmar ligament

- 1. Palmar carpal ligaments
- 2. Radioscaphocapitate ligament
- 3. Long radiolunate ligament
- 4. Radioschapholunate ligament
- 5. Short radiolunate ligament
- 6. Ulnocapitate ligament

#### **Dorsal ligaments**

- 5. intercarpal ligament
- 8. Dorsal radiotriquetral ligament





#### 28. Median Nerve variations

- 5 categories of variations the carpal tunnel:
- 1) Variations in the course of the thenar branch:
  - 78% thenar branch arises from the radial side.
  - Sometimes thenar branch arises from the volar side
  - [20% are transligamentous ] and 1% from ulnar side
- 2) Accessory branches of thenar nerve at the distal carpal tunnel . 5%

[One transligamentous to OP and FPB and another to Abd PB ]

3) High division of the distal median nerve [in the forearm]

4) 2 recurrent branches Accessory thenar branch : First branch is proximal to the carpal

tunnel and second is distal to the Carpal tunnel.

5) Variations of third common digital nerve (TCDN, origin).

Normal

#### Type I Division of Median N in the tunnel



II Median Nerve division found distal to the TCL III Distal to the superficial palmar arch but proximal to the superficial palmar arch.





## 29.Martin Gruber [M-G] anastomosis

Communication between median and ulnar nerves is very common, occurring in approximately 17% of the population. Here the motor nerve may cross over from the median to ulnar nerve in the forearm;

There are two patterns:

1. From median nerve in proximal forearm to ulnar nerve in middle to distal third of forearm

2. From anterior interosseous nerve to ulnar nerve

These are significant sources of misdiagnosis; for instance, a proximal injury may cause weakness of a muscle that it does not usually innervate. Fortunately, as electrophysiologic skills and techniques improve, we are increasingly able to diagnose M-G communications by nerve conduction studies (NCS).

Normal (Not Martin-Gruber) Martin-Gruber Type I Martin-Gruber Type II Martin-Gruber Type II Martin-Gruber Type III Martin-Gruber Type III

