BENIGN BONE TUMOR

Prevalence of benign bone tumors.

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteochondroma</td>
<td>45%</td>
</tr>
<tr>
<td>Osteoid Osteoma</td>
<td>10%</td>
</tr>
<tr>
<td>Enchondroma</td>
<td>10%</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>10%</td>
</tr>
<tr>
<td>Nonossifying fibroma</td>
<td>4%</td>
</tr>
<tr>
<td>Osteoblastoma</td>
<td>2%</td>
</tr>
<tr>
<td>Chondroblastoma</td>
<td>2%</td>
</tr>
<tr>
<td>Chrondromyxoid fibroma</td>
<td>2%</td>
</tr>
</tbody>
</table>

Clinical feature

- Pain: Local, Synovitis, Painful scoliosis
- Mass
- Deformity
- Pathological fracture
- Incidental finding

Enneking System

- I Latent
- II. Active
- III. Aggressive

Stage I

- Discovered incidentally
- Do not progress.
- May spontaneously resolve.
- Need: observation alone.
- When surgery: Intralesional excision

Non Ossifying Fibroma
Enchondroma
Simple bone cyst
Fibrous Dysplasia
Osteochondroma
Eosinophilic granuloma
Stage II

These lesions expand the host bone

They may destroy the cortex

Surgery: intralesional curettage.

<table>
<thead>
<tr>
<th>Simple bone cyst, Enchondroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoid osteoma</td>
</tr>
<tr>
<td>Chronodromyxoid fibroma</td>
</tr>
<tr>
<td>Osteofibrous dysplasia</td>
</tr>
</tbody>
</table>

Stage III

Benign but aggressive tumor

Soft tissue involvement

Present with pathologic fracture.

Surgery: en bloc resection

<table>
<thead>
<tr>
<th>Giant cell tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoblastoma</td>
</tr>
<tr>
<td>Chondroblastoma</td>
</tr>
<tr>
<td>Aneurysmal bone cyst.</td>
</tr>
</tbody>
</table>

X ray

1. Where is the lesion

Epiphyses: Chondroblastoma

Giant cell tumor

Diaphyses: Osteoid Osteoma

Eosinophilic Granuloma

Adamantinoma

Metaphyses: Aneurysmal bone cyst

Simple Bone Cyst

Non ossifying fibroma

Chronodromyxoid fibroma
1. **SIMPLE BONE CYST**

Simple bone cysts occur in young children [6-14 years]

Common site: Proximal humerus and proximal femur

Usually metaphyseal. With age, it can move towards the diaphyses

Radiological

| Osteolytic | Metaphyseal | Centric | With or without pathological fracture | No periosteal reaction [when no pathological fracture] | When fractured: fallen leaf sign. |

Treatment

1. Proximal humerus: The current standard of care is the injection of corticosteroid

2. For proximal femur: Curettage, bone graft and hip screw and plate

Companacci:

Steroid Vs surgery (170 in each group) 42% healed with one injection and 96% with multiple injection. With bone grafting 46% healed.
2. ANEURYSMAL BONE CYST

75% patients are under 20 years. In up to about 50% of cases, a pre-existing lesion can be identified: Giant Cell Tumor, Osteoblastoma, Chondroblastoma

Presentation

Pain and swelling which may have been present for years
Around knee, Hip, Vertebra
In the spine, compression may cause radicular symptoms or paraplegia
Patients may present with a pathologic fracture

Radiography

Metaphyseal
Osteolytic
Eccentric
Ballooned out appearance
With or without pathological
Periosteal reaction may be present

MRI

Increased signal in T2
Classical: “Multiple fluid level”

TREATMENT

The recurrence rates after curettage alone have been reported to be from 50%.

Surgical curettage, use of phenol or liquid nitrogen and bone grafting
Recurrence 25% usually graft resorption seen in 6 months.
Selective embolization of feeder vessels is beneficial in reducing bleeding.
III OSTEOCHONDROMA

Bony outgrowth with stalk or without stalk [sessile] with a cartilage cap

Commonest: Around the knee and shoulder

Clinical

Asymptomatic
Clicking: tendon sliding
Pseudo aneurysm
Fracture of Osteochondroma

Radiological

Stalk grows away from the physes
Cortex of the exostosis merges with cortex of the bone
Pedunculated or sessile
Calcification > 10 mm suspect malignancy

Treatment

Asymptomatic: needs only observation
Symptomatic: Needs excision
Secondary sarcoma: usually chondrosarcoma [<1%]. Wide block excision
IV MULTIPLE EXOSTOSES

Is grouped under dysplasia than benign tumor

AD

Incidence of malignancy: 10%

Sites: Around knee > Shoulder

(Scapula & Humerus)

Common Valgus or varus knee deformity:

Madlung deformity (radial bowing)

Valgus knee and ankle

Treatment: observation. Any swelling with a sudden increase in size, suspect a malignant change. It needs, biopsy to rule out sarcoma.

Multiple osteochondroma at metaphyses

Pediculated or sessile

Multiple bone involvement

Evidence of widening of metaphysis
V ENCHONDROMA

In hand and feet
Are always benign
When it occurs in the long bones: Always suspect low grade Chondrosarcoma

Treatment
Long bone: X ray assessment every 3 months.
Any increase in size or lesion becomes painful
CT or MRI assessment is indicated. If any suspicion, to be treated like primary tumor..

If no changes: follow up for a year with X ray:

<table>
<thead>
<tr>
<th>X ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lytic, centric, expansible, punctate stippling, pathological fracture</td>
</tr>
<tr>
<td>MR image of the left humerus shows tumor lobules present</td>
</tr>
<tr>
<td>The tumor did not destroy bone and was consistent with an Enchondroma.</td>
</tr>
</tbody>
</table>

In multiple endochondromatosis [Ollier’s] and when associated with multiple Haemangioma [Maffucci’s] there is increase risk of malignancy.
VI HISTIOCYTOSIS

1. Eosinophilic granuloma
 Self-limited disorder of bone seldom involving
 more than two or three osseous sites
 Age: 5-15 Years
 Local pain or pathologic fracture
 Lytic, punched out, irregular defects with
 periosteal reaction.
 Wide transition but still benign
 Spine: vertebra plana (Calvé disease).

2. Hand-Schuller-Christian
 Diabetes insipidus
 Proptosis
 Exophthalmus

3. Letterer-Siwe disease
 Fulminant disease
 Hepatosplenomegaly
 Lymphadenopathy

Treatment

Pathological fracture, Non-operative treatment is indicated. When fracture heals, curettage and
bone graft is indicated.
VII OSTEOID OSTEOMA

Typical: Night pain relieved by Aspirin
Never becomes malignant; recurrence is rare if nidus is removed completely.
Usually in the diaphysis of Femur and tibia
It is most commonly seen in the II & III Decade
When Spine is involved may present with painful scoliosis
Scoliosis disappears if excised within 15 months
Pathology: Vascularized Osteoid tissue surrounded by sclerotic bone
In osteoid osteoma the nidus is less than 1cm and in osteoblastoma lesion is more than 1.5 Cm

Treatment
- Wide en bloc excision of the nidus
- Unroofing of the nidus by gradual removal of the overlying reactive bone and excision with curettes and burrs
- Percutaneous CT guided core-drill excision or destruction of the nidus by radiofrequency or laser
- Radiofrequency Laser coagulation
VIII NONOSSIFYING FIBROMA [NOF] AND FIBROUS CORTICAL DEFECT [FBC]

FBC: When lesions confined to the cortex are called fibrous cortical defects.

Common and asymptomatic and spontaneous disappears

Some become: NOF [>2cm]

NOF: Multilocular, expansile, sclerotic margin, no periosteal reaction.

This extends into the medullary cavity

They are asymptomatic = Do not touch lesion

They eventually disappears and do not diagnose after 30 years

IX FIBROUS DYSPLASIA

Common, Hamartoma

Types

Monostotic 75%

Polyostotic 25%

Mazabraud’s syndrome: Poly Dysplasia and myxomas

Albright Syndrome [3%]

Poly-ostotic (one side of the body)

Precocious puberty

Pigmentation ["coast-of-Maine" [irregular]

Clinical

Asymptomatic

Pain or Pathologic fracture

Treatment

1. Observation and Patient Education

 Avoid contact sports

2. When polyostotic : endocrinologist opinion
3. Bisphosphonates

Pamidronate strengthens the bone

4 Surgical Indications

Corrective deformity + autogenous cancellous bone-grafting and screw and plate fixation

“Ground glass” appearance

Expansile lesion

Metaphseal or diaphyseal

Endosteal scalloping

“Shepherd's crook” deformity of femur

Increased uptake with bone scan

MRI: loss of marrow signal

PATHOLOGY

1. Delicate trabeculae of immature bone
2. With no osteoblast rimming
3. Enmeshed within a bland fibrous stroma of dysplastic spindle-shaped cells
4. The ratio of fibrous tissue to bone ranges from fields that are fibrous to those filled with dysplastic trabeculae.
5. "Alphabet soup." or Chinese letters

X. GCT [GIANT CELL TUMOR]

Occurs in skeletally matured (>20 years)

Females 1.5 times more

Commonly around knee [lower femur and upper tibia, lower radius]

Locally aggressive but benign

Clinical: Pain

- Eccentric
- Epiphyseal
- Expansile
- Osteolytic
- No periosteal reaction
- No sclerosis

10% malignancy on irradiation at 10 yr

Pathology

Mononuclear with round to ovoid shape, relatively large nuclei with inconspicuous nucleoli

- Multinucleated giant cells

Giant cells: is formed from fusion of spindle cells

- Resemble osteoclast in phenotype and function
- 60 u; numerous centrally located nuclei

Mononuclear cells: 2 different cell lines

I: Mononuclear round cells are non-neoplastic and express monocyte

- Macrophage markers react to CD13 and 68

II: Mononuclear spindle cells are responsible for neoplastic character for GCT

- Genetically unstable
Treatment

Curettage and Liquid nitrogen, phenol or bone cement

When there is fracture or recurrence: En bloc resection

Rarely lung metastases [2% and usually are benign]

Course

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>80%</td>
</tr>
<tr>
<td>Recurrence</td>
<td>30%</td>
</tr>
<tr>
<td>Malignancy</td>
<td>10%</td>
</tr>
<tr>
<td>Pulmonary metastases</td>
<td>2%</td>
</tr>
</tbody>
</table>