### **CAVUS FOOT**

### Definition

Abnormal elevation of the medial arch of the foot is a cavus foot. Development of the forefoot equinus is in relation to the hindfoot.

# Types

| Calcaneocavus:   | Polio, Weak Gastro, No varus component<br>Hindfoot deformity is a primary deformity                     |
|------------------|---------------------------------------------------------------------------------------------------------|
| Cavo-varus:      | Imbalance between Tibialis anterior and Peroneus longus<br>Varus present; forefoot is primary deformity |
| Equinocavovarus: | Partially corrected club foot                                                                           |

# Components

Plantarflexed first ray Tight Plantar fascia Paralyzed intrinsic muscle Paresis of Peroneal brevis and Tibialis anterior

# Anatomy

- 1. Windlass effect of Plantar Fascia
- 2. Shock absorber: a. Quadriceps
  - b. Eversion of heel on heel strike

### Pathomechanics

### 1. Cavus

Weak muscles: Tibialis anterior and Peroneus Brevis and Intrinsic. Results in: Clawing of toes which increases cavus due to Wind lass effect

Wind lass effect is exaggerated, therefore increases cavus

Imbalance of Peroneus longus and tibialis anterior increases cavus further





# 2. Heel varus is secondary deformity to the forefoot.

In a dropped first metatarsal in cavus, to get the V metatarsal plantigrade, there had to compensatory hindfoot varus. This is called "Tripod effect"

#### Causes

- 1. CNS: Cerebral palsy Hemiplegia Friedreich's 2. Spine: Spina bifida (myelodysplasia) Diastematomyelia Syringomyelia Polio Spinal cord tumors 3. PNS CMT = Hereditary sensorimotor neuropathy (HSMN) in all Pes cavus HSMN I AD Hypertrophic CMT: PMP 22 (Chr17) HSMN II AD Axonal CMT HSMN III AR **Djegerine Sottas** HSMN IV Refsum [Phytic storage] HSMN V Neuropathy with spastic paraplegia HSMN VI Optic atrophy with peroneal muscle atrophy 4. Miscellaneous Sciatic nerve division
- Compartment syndrome Residual clubfoot
- 5. In one-third of cavus: Idiopathic

### Clinical

Inheritance: AD for Type I and II and AR in type III Age of Diagnosis 10 years Usually bilaterally symmetric muscle involvement Stork leg appearance Gait [Marionette gait ie., pelvic elevation on the swing side compensation for foot drop] Peg leg gait = poor push off] Neurological assessment Weak motor: Intrinsic, Tibialis anterior and Peroneus Brevis Wasting and deformity Deformity: Untreated flexible becomes fixed deformity Sensory, reflexes and joint sensation assessment Keratosis Birth history, Family history Examine: Spine, small muscles of the hand Coleman's block test [Check foot examination]

Determines whether hind foot deformity is flexible

# X ray

Foot AP and Lateral [standing] Spine

Look for Apex: usually at Lisfranc joint Sometimes Naviculo-cunieform joint

Meary's angle Angle between talar axis and I Metatarsal Normal = 5° and in CMT 18°

0° to 15° is a mild deformity 15° to 30° is moderate 30° is severe.

Calcaneal pitch >30º calcaneus deformity

# **MRI spine and CT**

#### 4. EMG

| Type I    | Marked slowing motor and sensory        |
|-----------|-----------------------------------------|
| Type II   | Conduction normal and EMG [Denervation] |
| Type III: | Marked motor                            |

### 5. Biopsy: Rarely needed. Sural nerve

### 6. Genetics:

DNA Duplication Detection Test (Athena Diagnostics Inc, Worchester, MA).

The probability of a patient with bilateral cavovarus feet being diagnosed with Charcot-Marie-Tooth disease, regardless of family history, was 78%.

A family history of Charcot-Marie-Tooth disease increased the probability to 91%.

### Management

- 1. Treat the cause: eg: Tethered cord
- 2. Genetic counseling [AD]
- 3. Neurology referral
- 4. Non-operative: Shoe insert to support lateral forefoot and thus preventing hindfoot going into inversion with or without metatarsal bar

Advanced cases: extra depth shoes and observe.



Discuss progressive deformity and need 6 monthly observations

- 5. Surgery: Symptomatic or progressive deformity
- 6 Recurrence: repeated procedure

7 Cavus foot: nonprogressive with intact sensation has better prognosis

### Surgery

I. Soft tissue release [Plantar fascia and small muscle release, capsulotomies of midfoot joints ]

II. Tendon transfer [Jones procedure, extension diversion procedures]

III. Osteotomies: Japas, Coles, Calcaneal osteotomy

IV Fusion: Mid tarsal, triple

# Type of surgery

| Flexible               | Soft tissue release +/- Tendon transfer |
|------------------------|-----------------------------------------|
| Fixed; No arthritis    | Osteotomy                               |
| Fixed arthritic joints | Arthrodesis                             |

Correction should be obtained at the location of maximum deformity

# Prognosis

Is the deformity multiplanar or single-planar?

Is the deformity primarily forefoot, midfoot, hindfoot, or a combination of these?

Is one or more of the components fixed?

Is the underlying cause one of a progressive, severe course, with or without treatment? Are tendon transfers required to maintain the correction gained by arthrodesis or osteotomy? Is there a sensory deficit?

# **Type of Surgeries**

# STEINDLER'S PLANTAR RELEASES

Indications: Early cavus deformity With other osteotomies

Medial longitudinal incision Then incise the fascia transversely close to where it blends into the plantar surface of the calcaneus. Place a periosteal elevator or retractor on the deep surface of the fascia as it is released



### **CLAW GREAT TOE**

Greater toe [Jones procedure] Fusion of IP joint [screw fixation] EHL is transferred to the neck of metatarsal



### CLAWING OF LESSER TOES

PIP fusion and EDL lengthening; Capsulotomy of MTP EDL is diverted to the neck of the I metatarsal

#### OSTEOTOMIES

### DORSAL WEDGE OSTEOTOMY

Through the dorsal incision

Expose base of the metatarsal

With a thin-bladed power saw, make the proximal cut vertical, two thirds to three fourths of the way through the bone.

Make the distal cut about 4 mm from and angled toward the first cut, again cutting about 2/3 of the way through and joining the first cut.

Remove the intervening wafer of bone.

### JAPAS OSTEOTOMY

Advantages: Produce a more normal-appearing foot.

Disadvantages: Shortens the foot in children < 10Year Pseuadarthrosis 30%

It consists of a V-osteotomy in which the apex of the V is within the navicular.

One limb of the V extends laterally to cuboid and the other medially through the first cuneiform.





No bone is excised;

The proximal border of the distal fragment of the osteotomy is depressed plantarward while the metatarsal heads are elevated

### **COLE'S OSTEOTOMY**

Dorsal wedge osteotomy

Advantages: correction of deformity

Disadvantages:

Produce a short and an unattractive foot

High incidence of NU



### CALCANEAL WEDGE OSTEOTOMY:

Dwyer's lateral closing wedge for fixed hind foot varus and a Plantar fascia release.



Dwyer's osteotomy

# CALCANEAL SLIDE OSTEOTOMY

Indication is fixed varus deformity:

Lateral approach; single cut and the heel segment is slid laterally

# Calcaneal slide osteotomy



**Triple arthrodesis** 

### FIXED DEFORMITY WITH MIDTARSAL OR SUBTALAR ARTHRITIS

Triple arthrodesis And tendon transfer [Tibialis posterior]



# LAMBRINUDI [FOR GROSS EQUINES DEFORMITY]



# **NEUROMUSCULAR FOOT DEFORMITIES**

# Brain

- I Cerebral palsy
- II Fredrieck's ataxia

# Spine

| I. Spinal Dysraphism: Spina bifida occulta |                        |               |  |  |
|--------------------------------------------|------------------------|---------------|--|--|
| Spi                                        | Spina bifida manifesta |               |  |  |
|                                            | L1-3                   | Equinovarus   |  |  |
|                                            | L4                     | Cavovarus     |  |  |
|                                            | L5                     | Calcaneovarus |  |  |
| II Polio: any deformity                    |                        |               |  |  |
| III Arthrogryposis                         |                        |               |  |  |

IV Peripheral Nerve

Hereditary sensorimotor deficiency

Muscle

| Pseudomuscular dystrophy | Equinus |
|--------------------------|---------|
| Becker's dystrophy       | Equinus |
| Fascioscapulohumeral,    |         |
| Limb girdle              | Equinus |
| Myotonia: equinus        |         |
|                          |         |

### FRIEDRICH' ATAXIA

# AR

Fratexin protein is defective Spinocerebellar tract is inovled Pes cavus, Scoliosis, Ataxia Death is usually due to cardiomyopathy