TIBIAL PLATEAU FRACTURES

The severity of a tibial plateau fracture depends on the energy imparted to the limb. Low-energy injuries typically cause depression-type fractures, whereas high-energy injuries can lead to comminuted fracture with significant soft-tissue, and NV injury.

Evaluation

Careful clinical assessment of the soft-tissue envelope.
Neurovascular
Appropriate radiographs
CT

Advances
Temporary joint-spanning external fixator
Locking plates
Minimally invasive techniques
Anatomically contoured plates
Biologically respectful treatment principles.

Principles
Anatomic reconstruction of the proximal tibia with rigid fixation is rarely the goal.

Instead, indirect reduction techniques and other soft tissue–preservation methods safeguard vascularity.

Emphasize restoring both joint congruity and the mechanical axis of the limb.

Therefore
Safeguard tissue vascularity
Emphasizes restoration of joint congruity
Mechanical axis of the limb.

Pathoanatomy
1. The lateral plateau is higher than the medial plateau, forming an angle of 3° of varus
2. The lateral plateau: smaller and convex
The medial plateau is large and concave.

3. Both medial and lateral plateau: slope front to back by 10°

4. These characteristics lead to an eccentric load distribution in which the medial plateau bears approximately 60% of the knee’s load.

5. This asymmetric weight bearing results in increased medial subchondral bone formation and a stronger, denser medial plateau.

Why lateral plateau fracture is more common?

The relative strength of the medial plateau
The valgus anatomic axis of the lower extremity
Valgus force is more common than varus

Classification [Schatzker]

<table>
<thead>
<tr>
<th>Type I</th>
<th>Split type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Bending and shear force</td>
</tr>
<tr>
<td>Mostly in young</td>
<td></td>
</tr>
<tr>
<td>Undisplaced: ROM brace and NWB</td>
<td></td>
</tr>
<tr>
<td>Displaced: Open or closed reduction with screws or screw and plate</td>
<td></td>
</tr>
<tr>
<td>Lateral meniscus may be trapped more so when widely separated.</td>
<td></td>
</tr>
</tbody>
</table>
Type II Split depression

Type II
Most common
Patient usually around 50 years
Mechanism: Bending and shearing
Depressed fragment: anterior or posterior or central or all three
Depression calculated: lowest point on the lateral plateau to Medial plateau: >4mm is significant
Poor results: are due to residual depression
Always ORIF + Bone graft or substitute
Concomitant MCL: Repair or ROM brace

Type III Joint Depressant

Type III
In old people, Osteoporotic bone
Low velocity injury
Stability of the joint is rarely affected
Depression is lateral and central portion
Assess under GA: with valgus at different flexion.
If no instability: Rx Non-op
Make window and elevate and bone graft and screws

Type IV Medial Plateau fracture

Type IV
High velocity injury
Younger individuals
Poor result: due to ligament laxity and joint instability
Often associated with intercondylar eminence fracture; ACL rupture
There is lateral ligament disruption [avulsion from the fibula]
Rarely Peroneal nerve palsy
Medial buttress plate with or without intercondylar eminence
Type V

Bicondylar fracture

Type V
Mechanism: Equal axial thrust
There is no depression of articular cartilage

Prognosis depends on whether fracture line is extra-articular ie., near the eminence or not

Traction is an acceptable treatment and can achieve reduction

However: many tends to telescope. Therefore ORIF with a double plate [single or double incision] or Single locking plate or Hybrid fixation

Type VI

Complex fracture

Intra-articular fracture with metaphyseal fracture

Always surgery

Rx: Like V but may need hybrid or double plate

Factors for good result

1. Split or compression?
2. Velocity of injury
3. Osteoporosis
4. Medial or lateral plateau. Is isolated medial plateau is an analogue of lateral plateau? No. Higher level of damage associated with more severe mechanisms
of injury. Typically involve both LCL and ACL. More likely to have associated injuries of the popliteal artery and peroneal nerve.

Diagnosis
1. X rays: AP, Lateral
2. CT. Chan demonstrated that taking CT scans. CT modifies the surgical plan, in >25% of cases. The degree of articular depression often is underappreciated on plain radiographs.
3. MRI for soft-tissue imaging: ligamentous and meniscal injuries

Principle of treatment
1. > 3 mm of displacement: ORIF
2. Varus or valgus instability in extension > 10° compared to opposite knee: indication for ORIF
3. Type of fracture: Split and split depression are unstable and joint depressant is usually stable
4. Midline incision is preferred in anticipation of possible TKR
5. Split ITB
6. Divide the coronary ligament between meniscus and tibia and lift up the menisci
7. In Bicondylar fracture: fix medial condyle first